<< Prev | - Up - | Next >> |
This section explains how propagators with vectors as parameters can be implemented by the CPI .
The previous section explained techniques of how to handle propagator parameters which are vectors. This section implements the constraint , whose declarative semantics is defined by .
All parameters of the propagator are allowed to be finite domain variables resp. a vector of finite domain variables. We have the following propagation rules, which determine the operational semantics of the propagator for the constraint .
Rule 1:
Rule 2:
Rule 3:
Note that denotes the current domain of and denotes the update of with .
The first rule states that the domain of can only contain values such that and share at least one value. The propagation rule (Rule 2) states that the domain of cannot contain any value which does not occur in at least one indexed by the values of the domain of , i. e. . The third rule says that as soon as is a singleton containing , the th element of is equal to . The implementation of these rules is given in Section 1.5.5.
ElementProp
The state of an instance of the class ElementProp
contains a pointer to an array of OZ_Term
s, namely _d
. This is necessary, since it is not known beforehand how many elements are contained in the vector . The size of the vector is stored in _d_size
. Using a dynamic array in the state has some significant implications to the implementation of the member functions. The first function concerned is the constructor which has to allocate sufficient heap memory for the vector. The CPI provides the function OZ_vectorSize()
, which computes the size of a vector passed as OZ_Term
. This size is used to allocate an appropriately sized chunk of memory using the CPI function OZ_hallocOzTerms()
. Finally, the vector as Oz data structure has to be converted to a C/C++ array. For convenience, the CPI provides the function OZ_getOzTermVector()
which does this conversion. The following code gives the class definition described so far.
class ElementProp : public OZ_Propagator {
private:
static OZ_PropagatorProfile profile;
OZ_Term _n, _v, * _d;
int _d_size;
public:
ElementProp(OZ_Term n, OZ_Term d, OZ_Term v)
: _n(n), _v(v), _d_size (OZ_vectorSize(d))
{
_d = OZ_hallocOzTerms(_d_size);
OZ_getOzTermVector(d, _d);
}
virtual OZ_Return propagate(void);
virtual size_t sizeOf(void) {
return sizeof(ElementProp);
}
virtual OZ_PropagatorProfile *getProfile(void) const {
return &profile;
}
virtual OZ_Term getParameters(void) const;
virtual void gCollect(void);
virtual void sClone(void);
};
OZ_PropagatorProfile ElementProp::profile;
The function getParameters()
returns the arguments of the propagator in a list. Thereby, the vector is represented in a sublist. The local C/C++ variable list
is used to build up the list from the end of the vector. Therefore it is initialised as empty list and extended element-wise.
OZ_Term ElementProp::getParameters(void) const {
OZ_Term list = OZ_nil();
for (int i = _d_size; i--; )
list = OZ_cons(_d[i], list);
return OZ_cons(_n,
OZ_cons(list,
OZ_cons(_v, OZ_nil())));
}
The member functions gCollect()
and sClone()
update the propagator's references to the heap after the propagator has been copied by garbage collection or space cloning. Updating the data members _n
and _v
is done by applying OZ_gCollectTerm()
resp. OZ_sCloneTerm
to them. Updating the array _d
requires to duplicate the array and then to update all elements. This funtionality is provided by OZ_gCollectAllocBlock()
(OZ_sCloneAllocBlock()
) for garbage collection (space cloning). Here comes the code of those member functions.
void ElementProp::gCollect(void) {
OZ_gCollectTerm(_n);
OZ_gCollectTerm(_v);
_d = OZ_gCollectAllocBlock(_d_size, _d);
}
void ElementProp::sClone(void) {
OZ_sCloneTerm(_n);
OZ_sCloneTerm(_v);
_d = OZ_sCloneAllocBlock(_d_size, _d);
}
The implementation of the C/C++ function to impose the propagator is straightforward with the techniques presented in Section 1.4. Note that this C/C++ function treats empty vectors separately, since an empty list (resp. literal) is a valid vector, but the constraint is not defined on empty vectors. Therefore, the header function is left via the member function fail()
in case a vector of length 0 is detected.
OZ_BI_define(fd_element, 3, 0)
{
OZ_EXPECTED_TYPE(OZ_EM_FD
","OZ_EM_VECT OZ_EM_FD
","OZ_EM_FD);
ExtendedExpect pe;
OZ_EXPECT(pe, 0, expectIntVar);
OZ_EXPECT(pe, 1, expectVectorIntVarAny);
OZ_EXPECT(pe, 2, expectIntVar);
if (OZ_vectorSize(OZ_in(1)) == 0)
return pe.fail();
return pe.impose(new ElementProp(OZ_in(0),
OZ_in(1),
OZ_in(2)));
}
OZ_BI_end
The implementation uses the class ExtendedExpect
(as explained in Section 1.4.3 since the imposition of this propagator requires to check if the second argument is a vector of finite domain variables and this functionality is not directly provided by the CPI class OZ_Expect
.
The propagator for the constraint operates on a vector, which is represented by an array in the state of the propagator. The member function propagate()
has to apply certain functions, like leave()
and fail()
, to all elements of the array at once and not to individual elements. Therefore, it makes sense to define an iterator for such data structures.
The following code presents an iterator class for an OZ_FDIntVar
array, which will be used by the member function propagate()
of the propagator.
class Iterator_OZ_FDIntVar {
private:
int _l_size;
OZ_FDIntVar * _l;
public:
Iterator_OZ_FDIntVar(int s, OZ_FDIntVar * l)
: _l_size(s), _l(l) { }
OZ_Boolean leave(void) {
OZ_Boolean vars_left = OZ_FALSE;
for (int i = _l_size; i--; )
vars_left |= _l[i].leave();
return vars_left;
}
void fail(void) {
for (int i = _l_size; i--; _l[i].fail());
}
};
The iterator class provides the member functions leave()
and fail()
which call in turn the corresponding member functions on all elements of the array l
. The function leave()
returns 1 if there is at least one non-singleton domain left.
The propagate()
member function implements the propagation rules presented in Section 1.5.1 for the constraint .
The function propagate()
defines local variables of type OZ_FDIntVar
. Then it initializes the iterator object D
. That avoids having to apply a member function to each element of d
by hand if all elements have to be considered. The following for
-loop initializes the elements of d
.
The code coming after the implementation of the propagation rules (see below) checks if there is a non-singleton domain left, and if so it returns OZ_SLEEP
. Otherwise the propagator is entailed and consequently returns OZ_ENTAILED
. The label failure
is provided because of the use of the macro FailOnEmpty
(see Section ``The Propagation Part of a Propagator'') and the corresponding code applies fail
to all variables of type OZ_FDIntVar
.
OZ_Return ElementProp::propagate(void)
{
OZ_FDIntVar n(_n), v(_v), d[_d_size];
Iterator_OZ_FDIntVar D(_d_size, d);
for (int i = _d_size; i--; )
d[i].read(_d[i]);
{ /* propagation rule for n */
OZ_FiniteDomain aux_n(fd_empty);
for (int i = _d_size; i --; )
if ((*(d[i]) & *v) != fd_empty)
aux_n += (i + 1);
FailOnEmpty(*n &= aux_n);
}
{ /* propagation rule for v */
OZ_FiniteDomain aux_v(fd_empty);
for (int i = n->getMinElem();
i != -1;
i = n->getNextLargerElem(i))
aux_v = aux_v | *(d[i - 1]);
FailOnEmpty(*v &= aux_v);
}
{ /* propagation rule for d[n] */
if (n->getSize() == 1) {
int o = n->getSingleElem();
D.leave(); n.leave(); v.leave();
return replaceBy(_v, _d[o - 1]);
}
}
return (D.leave() | n.leave() | v.leave())
? OZ_SLEEP : OZ_ENTAILED;
failure:
D.fail(); n.fail(); v.fail();
return OZ_FAILED;
}
The propagation rules are implemented in the same order as they are presented in Section 1.5.1. That ensures that the values for in rule 2 * are always in the index range of the vector d
, since rule 1 * makes sure that only valid indices are contained in the domain of . Note that the indices of vectors in Oz range over and the corresponding indices of C/C++ arrays over .
Implementation of propagation rules
The implementation of the propagation rule 1 * starts with an initially empty auxiliary domain aux_n
. It collects all integers in the auxiliary domain, where the intersection of and is not empty. That is equivalent to finding at least one being contained in and . The domain of , i. e. n
, is constrained by aux_n
.
The second rule 2 * states that the domain of cannot contain values that are not possible elements of the vector . The implementation uses again an initially empty auxiliary domain aux_v
and collects in a loop all elements of in aux_v
by iterating over all being contained in . The implementation of this rule closes with constraining v
by aux_v
.
The last rule, rule 3 *, is only applied if is determined, i. e. n->getSize()
returns 1. Then it retrieves the value , applies leave()
to all variables of type OZ_FDIntVar
and replaces the propagator by the equality using the member function replaceBy()
of class OZ_Propagator
(see Section 1.3).
<< Prev | - Up - | Next >> |