7.1 Finite Set Intervals

inf

FS.inf

An integer constant that denotes the smallest possible element of a set. Its value is implementation-dependent. In Mozart FS.inf is 0.

sup

FS.sup

An integer constant that denotes the greatest possible element of a set. Its value is implementation-dependent. In Mozart FS.sup is 134 217 726.

compl

{FS.compl $M1 $M2}

\codeinline{oz}{M2} = \{\codeinline{oz}{FS.inf},\ldots,\codeinline{oz}{FS.sup}\}\setminus \codeinline{oz}{M1}

complIn

{FS.complIn $M1 $M2 $M3}

\codeinline{oz}{M3} = \codeinline{oz}{M2} \setminus \codeinline{oz}{M1}

include

{FS.include +*M}

\codeinline{oz}{D} \in \codeinline{oz}{M} \wedge \codeinline{oz}{FS.inf} \le \codeinline{oz}{D} \le \codeinline{oz}{FS.sup}

exclude

{FS.exclude +*M}

\codeinline{oz}{D} \notin \codeinline{oz}{M}

card

{FS.card *M ?D}

\codeinline{oz}{D} = \# {M}

cardRange

{FS.cardRange +I1 +I2 *M}

\codeinline{oz}{I1} \le \# {M} \le {I2}

isIn

{FS.isIn +*M ?B}

(\codeinline{oz}{E} \in \codeinline{oz}{M}) \rightarrow \codeinline{oz}{B}

makeWeights

{FS.makeWeights +SpecW ?P}

Returns a procedure with signature {P +I1 ?I2}. This procedure maps an element to a weight according to the weight description passed to FS.makeWeights.


Denys Duchier, Leif Kornstaedt, Martin Homik, Tobias Müller, Christian Schulte and Peter Van Roy
Version 1.4.0 (20080702)